Theoretical exposition for thunder-begin#

Within the FIREBALL program suite [LJO+11]. slightly excited numerically generated pseudo-atomic fireball wave-functions (also known as Sankey-Niklewski wave-functions) are used.

In solving the one-electron Schrödinger equation,

\[ \left(-\frac{\hbar}{2m}\nabla^2 + V_{ext}(\mathbf{r}) + \mu_{xc}[\rho_{in}(\mathbf{r})] + \frac{e^2}{2}\int \frac{\rho_{in}(r)}{|\mathbf{r}-\mathbf{r}'|} d^3r' \right) \psi_i(\mathbf{r}) = \epsilon_i \psi_i(\mathbf{r}) \]

a set of slightly excited pseudo-atomic fireball wave-functions are computed within density-functional theory (using either the local-density approximation or generalized gradient corrections) and a norm-conserving separable pseudo-potential [SDW+98]

Theoretical exposition for thunder-create#


James P. Lewis, Pavel Jelínek, José Ortega, Alexander A. Demkov, Daniel G. Trabada, Barry Haycock, Hao Wang, Gary Adams, John K. Tomfohr, Enrique Abad, Hong Wang, and David A. Drabold. Advances and applications in the FIREBALL ab initio tight-binding molecular-dynamics formalism. physica status solidi (b), 248(9):1989–2007, 2011.


Otto F. Sankey, Alexander A. Demkov, Wolfgang Windl, Jürgen H. Fritsch, James P. Lewis, and Miguel Fuentes-Cabrera. The application of approximate density functionals to complex systems. International Journal of Quantum Chemistry, 69(3):327–340, 1998.